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1 Sufficient Statistics, Fano’s Inequality, and the Asymp-
totic Equipartition Property

1.1 Sufficient statistics

Last time, we discussed the data processing inequality. Given Y − X − Z (i.e. Y and Z
are conditionally independent given X), the data processing inequality says that

I(X;Z) ≥ I(Y ;Z).

The equality condition is when I(X;Z | Y ) = 0, i.e. X − Y − Z.
We also discussed sufficient statistics. The idea is to think about learning about Θ by

processing some observations X into T (X), so Θ−X − T (X). Then Θ− T (X)−X if and
only if I(Θ;X) = I(Θ;T (X)). Given Θ − T (X) − X, we say that T (X) is a sufficient
statistic (for learning about Θ from X).

If |X | = d, let u(x) = 1
d for x ∈X . Given (p(x), x ∈X ), then

D(p || u) =
∑
x

p(x) log
p(x)

u(x)
= log d−H((p(x), x ∈X )).

So it is difficult to define entropy in non-discrete settings. Regardless, here is a non-discrete
example of a sufficient statistic.

Example 1.1. Let X1, . . . , Xn
iid∼ N(θ, 1) when Θ = θ, where Θ ∈ {θ1, . . . , θd} is a random

variable. Then 1
n

∑n
i=1Xi is a sufficient statistic for Θ. To check this, we need to show

that Θ−X − (X1, . . . , Xn), where X := 1
n(X1, . . . , Xn). The conditional joint density is

f(x1, . . . , xn | θ) =

n∏
i=1

1√
2π
e−(xi−θ)

2/2

=
n∏
i=1

1√
2π
e−(xi−x+x−θ)

2/2
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=
1

(2π)n/2
e−

∑n
i=1(xi−x)2e−

n
2
(x−θ)2 e−

∑n
i=1(xi−x)(x−θ)︸ ︷︷ ︸

=1

.

Now

f(x1, . . . , xn | x, θ) =
f(x1, . . . , xn, θ, x)

f(θ, x)

=
f(x1, . . . , xn, x | θ)

f(x | θ)
And f(x | θ) = e−

n
2
(x−θ)2 by integrating over x1, . . . , xn, so

= f(x1, . . . , xn | x).

1.2 Fano’s inequality

In the data processing inequality, we had Y −X− Ŷ , where Ŷ is viewed as derived from X
to learn about Y . Suppose Y and Ŷ take values in the same set and our goal is to try to
get small P(Ŷ 6= Y ). Fano’s inequality gives us an lower bound on this probability using
the conditional entropy of Y given X.

Theorem 1.1 (Fano’s inequality). Suppose Y −X − Ŷ , and let pe = P(Y 6= Ŷ ). Then

H(Y | X) ≤ H(Y | Ŷ ) ≤ h(pe) + pe log(|Y | − 1),

where h(pe) = −pe log pe − (1− pe) log(1− pe) is the binary entropy function.

Proof. Because I(X;Y ) = H(Y ) −H(Y | X) and I(Ŷ ;Y ) = H(Y ) −H(Y | Ŷ ), the data
processing inequality gives H(Y | X) ≤ H(Y | Ŷ ). Now consider H(Y,E | Ŷ ), where
E = 1{Y 6=Ŷ } is a {0, 1}-valued random variable. Write this as

H(Y,E | Ŷ ) = H(Y | Ŷ ) +H(E | Y, Ŷ )︸ ︷︷ ︸
=0

.

We can also write this as

H(Y,E | Ŷ ) = H(E | Ŷ ) +H(Y | E, Ŷ )

≤ H(E) + peH(Y | E = 1, Ŷ )

≤ h(pe) + pe log(|Y | − 1).

1.3 The asymptotic equipartition property

Given (p(x), x ∈X ) with X finite, let X1, . . . , Xn
iid∼ p. Then

pn(xn1 ) =
n∏
i=1

p(xi)
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=
∏
x∈X

p(x)N(x|xn1 ),

where N(x | xn1 ) =
∑n

i=1 1{xi=x} is the number of times x shows up in x1, . . . , xn.

= 2
∑

x∈X N(x|xn1 ) log p(x).

The Strong Law of Large Numbers tells us that 1
nN(x | Xn

1 ) → p(x) almost surely as
n → ∞. This suggests that for large n, the realizations that “matter” are those xn1 for
which each N(x | xn1 ) is roughly np(x). The asymptotic equipartition property formalizes
this statement in a weak way via the weak law of large numbers. The “method of types”
formalizes this more carefully.

The asymptotic equipartition property comes from applying the weak law of large
numbers to the iid sequence of entropy densities, i.e. to the sequence log 1

p(x1)
, log 1

p(x2)
, . . . .

Lemma 1.1 (Weak law of large numbers). For any real-valued iid sequence Z1, Z2, . . .
with E[|Z1|] <∞,

1

n

n∑
i=1

Zi
p−→ E[Z1].

That is, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[Z1]

∣∣∣∣∣ ≤ ε
)
→ 1

as n→∞.

Theorem 1.2 (Asymptotic equipartition property). For all ε > 0,

P
(∣∣∣∣− 1

n
log p(X1, . . . , Xn)−H(X)

∣∣∣∣ ≤ ε)→ 1

as n→∞.

This leads us to define the following.

Definition 1.1. The set of ε-weakly typical sequences is

A(n)
ε :=

{
xn1 :

∣∣− 1
n log pn(xn1 )−H(X)

∣∣ ≤ ε} .
We can see

xn1 ∈ A(n)
ε ⇐⇒ 2−nH(x)2−nε ≤ pn(xn1 ) ≤ 2−nH(X)2nε.

Proposition 1.1.
|A(n)

ε | ≤ 2nH2nε.
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Proof. We must have P(Xn
1 ∈ A

(n)
ε ) ≤ 1.

The AEP says that
P(Xn

1 ∈ A(n)
ε )→ 1

as n→∞. The left hand side is equal to∑
xn1∈A

(n)
ε

pn(xn1 ).

Hence, for all ε→ 0, if n is large enough (how large depending on δ), P(Xn
1 ∈ A

(n)
ε ) ≥ 1−δ.

Hence,
|A(n)

ε | ≥ (1− δ)2nH2−nε

for all large enough n.
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